
www.manaraa.com

Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Master's Theses Graduate College 

8-2020 

Analysis of Interdunal Wetlands and Ecosystem Dynamics using Analysis of Interdunal Wetlands and Ecosystem Dynamics using 

UAS and OBIA in Ludington State Park, Michigan UAS and OBIA in Ludington State Park, Michigan 

Claire Gilbert 
Western Michigan University, claire.gilbert1223@gmail.com 

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses 

 Part of the Environmental Monitoring Commons, Geographic Information Sciences Commons, and the 

Physical and Environmental Geography Commons 

Recommended Citation Recommended Citation 
Gilbert, Claire, "Analysis of Interdunal Wetlands and Ecosystem Dynamics using UAS and OBIA in 
Ludington State Park, Michigan" (2020). Master's Theses. 5173. 
https://scholarworks.wmich.edu/masters_theses/5173 

This Masters Thesis-Open Access is brought to you for 
free and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Master's Theses by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/931?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/5173?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F5173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


www.manaraa.com

Analysis of Interdunal Wetlands and Ecosystem Dynamics 

using UAS and OBIA in Ludington State Park, Michigan 

by 

Claire Gilbert 

A thesis submitted to the Graduate College 

in partial fulfillment of the requirements  

for the degree of Master of Science 

Geography 

Western Michigan University 

August 2020 

Thesis Committee: 

Adam J. Mathews, Ph.D., Chair 

Kathleen Baker, Ph.D. 

Tiffany Schriever, Ph.D. 



www.manaraa.com

Copyright by 

Claire Gilbert 

2020 



www.manaraa.com

Analysis of Interdunal Wetlands and Ecosystem Dynamics 

using UAS and OBIA in Ludington State Park, Michigan 

Claire Gilbert, M.S. 

Western Michigan University, 2020 

The Great Lakes sand dunes are the world's largest freshwater dune complex. There is a 

functional relationship between coastal wetlands and freshwater sand dune, referred to as 

interdunal wetlands. Interdunal wetland systems are highly dynamic and change dramatically 

seasonally and annually. Using geographic information systems (GIS) and unoccupied aerial 

systems (UAS), this thesis project is focused on understanding the spatial distribution of sparse 

and dense vegetation, and abiotic influence such as distance to coast, slope, and aspect influence 

interdunal wetland stability within a Great Lakes shoreline dune system. Object-based image 

analysis (OBIA) classification results extracted meaningful vegetation densities of growth and 

loss and wetland growth and loss features for spatial analysis. Vegetation growth is more 

predominant in west and south portions of wetlands and is more stable, while the north and east 

portions of wetland tend to expand.  
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 INTRODUCTION 

Wetlands are defined as areas of land experiencing water at or near the surface of the 

ground for a portion of the year (Gray, 2000). These areas define habitats for specific organisms 

adapted for variable water systems, soil types, and wildlife communities (EPA, 2004). Wetlands, 

more importantly, play a role in providing complex ecosystem services including structures for 

biodiversity and wildlife habitat; functions of water purification, carbon sequestration, nutrient 

retention, flood prevention, soil development, and climate change mitigation; processes for 

nutrient cycling, primary productivity, and nitrogen removal; food production, fibers, fish and 

crustaceans; and uses for recreation and human well-being (LaPage, 2011; Ying-zi et al., 2008). 

LePage (2011) explains that wetlands are inextricably linked to human health, and ecological 

impacts such as climate change and infrastructure growth are affecting the quality and quantity 

of benefits humans depend upon. 

Wetland functions and successional stages largely influence ecological health and 

adaptability of dune ecosystems. The mechanisms and processes of a particular complex of 

dunes determine species composition due to sand transportation, the burial of pioneer vegetation, 

establishment of stabilizing vegetation, and soil profiles (Johnson & Miyanishi, 2008). Wetlands 

systems situated in coastal dune systems, referred to as interdunal wetlands, along the Great 

Lakes are of particular interest in this research. The Great Lakes sand dunes are the world's 

largest freshwater dune complex. There is a functional relationship between coastal wetlands and 

freshwater sand dune.  
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Interdunal wetlands form in troughs of the Great Lake sand dunes and are sources of 

great biodiversity and plays a critical role in productivity and the hydrologic cycle. Using 

geographic information systems (GIS) and unoccupied aerial systems (UAS), this thesis research 

maps the spatial distribution of sparse and dense vegetation and to understand how the patterns 

influence dune regression and growth, and wetland stability within a Great Lakes shoreline dune 

system. This project investigates a wetland system within a Lake Michigan dune system that 

experiences varying stability of vegetation and wetland shape and size. The ecosystem services 

wetlands provide to wildlife and human well-being can be considerably affected by prevailing 

environmental conditions and climate change. The immediate surroundings of interdunal 

wetlands such as vegetation densities, and influences of wind disturbance, dune slopes, and 

distance to the shoreline were analyzed to understand the whole interdunal wetland complex. 

This thesis is concerned with vegetation densities, sparse and dense, and their relationship 

with wetlands and dune dynamics at Ludington State Park (LSP) (see Figure 1). The sparse 

vegetation being classified contains herbaceous plants such as grasses and low-lying shrubs, 

while the dense vegetation is classified by tree canopy cover. By classifying the vegetation 

densities, an opportunity for a more detailed analysis of plant-environment, plant-plant, and 

plant-animal interactions among interdunal wetlands is possible. Characterizing the existing 

sparse vegetation as a pioneer or stabilizing species for dune succession provides information on 

interdunal successional stages, and more importantly, the overall biodiversity and productivity of 

interdunal wetland. This project analyzes areas of significant dune and wetland movement, and 

clusters of sparse or dense vegetation to understand how each wetland and the immediate 

surrounding of vegetation densities interact. 
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Remote sensing advancements have increased as a result of UAS enhancements. Now, 

the research capabilities have substantially increased with UAS lower cost and higher 

accessibility of digital cameras that allow for higher spatial and temporal aerial imagery than 

satellite imagery. (Mathews, 2015; Hardin & Jensen, 2011). Standard UAS used for small-scale 

research are fixed or rotary-wing aircrafts manufactured with lightweight material and adaptive 

programming that meets the needs of consistent flight paths, limited battery power, and Federal 

Aviation Administration (FAA) regulations. Hardin & Jensen (2011) outline data analysis 

opportunities using UAS for environmental research; with commercial image processing 

software, researchers can process large UAS datasets into large-scale products and maps for 

further data analysis. UAS imagery allows research to obtain specific spectral information of the 

targeted environment, with high spatial resolution of 3 cm. 
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Figure 1. Ludington State Park reference map. 

Research Questions 

The importance of examining the relationship of latitudinal gradients among vegetation 

structures and habitat conditions of interdunal wetlands has been recognized by researchers and 

Great Lakes programs and agencies (Albert, 2003; EPA, 2004; Albert et al., 2005). There is 

limited research on interdunal wetlands, specifically, areas with freshwater resources. Research 

is needed for the identification of vegetation types, a better understanding of complex species 

interactions, and sustainable management practices of interdunal wetlands. In summary, there is 
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a need for a better understanding of wetland communities. More specifically, the following 

research questions are addressed at Ludington State Park in Ludington, Michigan: 

1. What are the spatial distributions of sparse and dense vegetation found in these

ecosystems?

a. What are the abiotic differences such as slope, aspect, and distance to Lake

Michigan for the spatial distributions of sparse and dense vegetation trends?

2. How dynamic is the stability of wetlands in this ecosystem?

a. What is the annual and monthly stability wetland or growth or reduction of this

ecosystem?

b. What are the most prevalent variables for dune and wetland stability?

i. How does sparse or dense vegetation influence the stability of wetlands?

Research Justification  

Michigan Sea Grant – tracking biodiversity in Lake Michigan's interdunal wetlands 

An ongoing case study in interdunal wetlands along the east coast of Lake Michigan 

includes documenting invertebrate and amphibian species populations throughout the areas of 

interest from 2017 to 2019 (see Figure 2). The interdunal wetland research project is funded by a 

Michigan Sea Grant of nearly $200,000 overseen by Tiffany Schriever, Ph.D., an assistant 

professor of biology at Western Michigan University (WMU). The research group is examining 

the relationship between macroinvertebrate community structure and habitat conditions, 

including the spatial and temporal patterns of amphibians, the taxonomic and functional structure 

of macroinvertebrate assemblages, and landscape-level genetic patterns in coastal aquatic insects. 

The objective of this research group is to access biodiversity throughout Lake Michigan's coastal 

wetlands on the leeward side of dune ridges. This research project is the first of its kind in 
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Michigan. The research areas begin with Indiana Dunes State Park located on the southern shore 

of Lake Michigan; the following areas increase latitudinally on the east coast, starting with 

Warren Dunes State Park, followed by Saugatuck Harbor Natural Area, LSP, and Sleeping Bear 

Dunes.  

This thesis project allows for more robust understandings of interdunal wetlands and 

supplement the ongoing case study funded by a Michigan Sea Grant through application of 

remote sensing techniques to understand the ecological interaction between associated vegetation 

densities found within interdunal wetlands. While the WMU Department of Biological Sciences 

is looking at species types and populations of macroinvertebrates and amphibians at multiple 

locations, this research project focuses on LSP one of the five interdunal wetland ecosystems 

currently being studied by Schriever's lab situated along the eastern coast of Lake Michigan. 

Potentially, future research implements the significant findings derived from remote sensing 

analyses for this site to the remaining interdunal wetlands ecosystem being studied.     
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Figure 2. Interdunal wetlands on the Lake Michigan coast. 

Overall reasoning  

Remote sensing applications and additional research methods are interdisciplinary, 

joining WMU Geography and Biological Sciences graduate programs. LePage (2011) states that 

wetland managers need to be educated in all aspects of wetland science, including ecology, 

geography, geology, engineering, socio-political, and economic components to be successful in 

wetland restoration and enhancement. Remote sensing applications allows the biology research 
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lab to investigate the importance of vegetation densities within interdunal wetlands further. The 

research finding from both departments can educate shoreline environmental managers on how 

to make sustainable decisions for these unique wetland types. Additionally, the prominent spatial 

pattern of vegetation densities found in this reach can lead to a further understanding of high 

biodiversity locations, where more invertebrates and amphibians are likely to be found, and 

where extensive sampling should take place.  
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BACKGROUND 

Introduction 

Due to limited research specifically focused on interdunal wetlands, a multidisciplinary 

approach concerning separate studies of dune systems, wetland systems, and remote sensing 

techniques is needed. While ecological knowledge is necessary background, there is a greater 

focus in the literature review on remote sensing techniques and their application to the ecology 

of dune areas. The research presented in the following literature review outlines what is currently 

feasible in terms of vegetation classification and species habitat assessment. Background 

research related to dune and wetland systems illustrates the dynamics of all interdunal wetlands.  

The phenology of associated vegetation is an important consideration when acquiring 

ground reference data and aerial imagery. Additionally, anthropogenic activities are changing 

wetland stability and signifies that an interdisciplinary environmental management approach is 

needed. The recent research advances in remote sensing applications allow for improved 

techniques to monitor highly dynamic systems. The presented opportunities for lidar-imagery 

fusion allows better surveying techniques of interdunal wetlands. The ideal approach for 

analyzing the ecological uniqueness of these concentrated and dynamic systems is through 

object-based image analysis (OBIA) techniques. 

Dune Profiles and Wetland Systems  

To fully understand the complexity of interdunal wetlands, knowledge of landscape 

ecology and eco-services is necessary. Landscape ecology is a broad term to describe and 

investigate "spatial structure, interaction, coordination function and process of the landscape 
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composed by many different ecosystems" (Wang et al., 2008, p. 164). Moreover, it stresses 

spatial ecology, scale, patterns, and dynamics to maintain ecological stability. Wetland 

landscapes are ecosystem mosaics of heterogeneous characteristics of aquatic and terraneous 

transition belts, with abundant biotic and abiotic resources (Wang et al., 2008). Interdunal 

wetlands are naturally rare and dynamic coastal ecosystems that fluctuate seasonally and 

cyclically (Lightfoot et al., 2020).  

As mentioned previously, wetland ecosystem services provide structures, functions, 

processes, goods, and uses for the landscape. Wetland Management is concerned with 

implementing practices and policies to protect and enhance ecological services (LePage, 2011).  

Furthermore, research regarding the landscape ecology of wetlands relies heavily on geospatial 

tools and techniques (e.g., remote sensing, GIS, GPS). Researchers can collect, interpret, and 

analyze spatial data more efficiently and with more accuracy through the advancements of 

remote sensing platforms.  

For accurate vegetation classification in interdunal wetland systems, it is crucial to 

understand the dynamics and processes of wetlands and dune systems. Previous research on 

wetland functions along environmental gradients provides insight into expected surface 

characteristics. Wetlands are areas of transition between aquatic and terrestrial ecosystems that 

provide a niche for specially adapted species. Brinson (1993) classifies wetlands by type using 

the relationships among precipitation, groundwater, and overland flow as determinant variables. 

There are distinct water movements that affect the variation of sediments throughout the wetland, 

including inflow and outflow rates, elemental content such as nitrogen and phosphate, and water 

sources.  
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Albert et al. (2005) outlined a hydrogeomorphic classification system for Great Lakes 

Coastal Wetlands. Within this framework, Ludington State Park's interdunal wetlands are 

classified as either Open or Protected Lacustrine Systems of shoreline or embayment potentially 

encompassing nontidal Palustrine systems (see Figure 3 and 4). Open Lacustrine systems are 

lake controlled, possessing littoral sediment, sand-bar development, that pose limitations for 

organic sediment accumulation, vegetation expansion, and little to moderate diversity of 

macroinvertebrates. Nearshore processes of wave climate affect dune profiles and can range 

from steep to shallow slopes. Due to prevailing winds, vegetation development is relatively 

unabundant within 100 meters from the shoreline.  

Figure 3. Hydromorphic classification for Great Lakes wetlands (Source: Albert et al., 2005). 
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Figure 4. Wetland Lacustrine System classification showing the proximity and potential of 

Palustrine forested wetland (Source: Federal Geographic Data Committee, 2013). 

Lakes and watersheds control the formation of Protected Lacustrine Systems. They are 

identified with sand-spit, offshore bar, or till-enclosed bays of protection with increased organic 

sediment accumulation and diversity of aquatic and surrounding terraneous vegetation (Albert et 

al. 2005). These wetlands have high diversity in submerged and emergent vegetation and high 

diversity in macroinvertebrates. However, protected embayment and sand-spit wetlands are quite 

different; in contrast, embayment systems have extensive vegetation development around till 

indentations, sand-spit wetlands form on gentle slopes, and have sparse vegetation due to 

moderate organic sediment accumulation (Albert et al. 2005). 

Following Albert et al. (2005) research, Kost et al. (2007) further defined interdunal 

wetland communities for Michigan Natural Feature Inventory (MNFI). As noted by the Federal 
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Geographic Data Committee (FGDC) (2013), "Islands of Palustrine wetland may lie within the 

boundaries of the Lacustrine System." In this case, our research of interdunal wetlands are 

classified as Palustrine within the Lacustrine System (see Figure 5 and 6). These wetlands are a 

branch down from Palustrine marshes that are located in the depressions of open embayment or 

the middle of sand-split dune ridges (refer to Figure 4) (Kost et al., 2007). Additionally, the 

depressions and wetlands were likely influenced by wind creating bluff blowouts or historic river 

channels. The water-level fluctuations of Lake Michigan influence the creation of linear 

depressions inside the upland foredune and foredune along the shoreline (Kost et al., 2007). 

Further, upland dunes and wetlands are less influenced lake's water-level.  

Figure 5. Wetland palustrine system classification of temporal flooding (Source: Federal 

Geographic Data Committee, 2013). 
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Figure 6. Wetland in open embayment dune (Source: Frazier, 2017). 

Interdunal wetlands are dominated by herbaceous vegetation; rush, sedge, and shrubs that 

are adapted for fluctuating water tables and saturated sand and wetland water with neutral to 

moderately alkaline. The wetlands unconsolidated bottom and shore substrate contains dead 

plant tissue, promoting rooted vascular submergent plants, floating vascular plants, and diversity 

of invertebrate fauna (see Figure 7). 
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Figure 7. Interdunal wetland with rooted vascular plants and surrounding vegetation (Source: 

Cohen et al., 2020). 

Dune systems are highly dynamic and change dramatically seasonally and annually 

(Delgado-Fernandez et al., 2009). Natural processes of dune growth and regression develop over 

several types of land cover within a wetland, providing a unique niche. Successional stages of 

dune vegetation fluctuate throughout the dune system. Dune succession is a 'complex gradient of 

changing environmental constraints' that directly effects vegetation growth, survival, and 

reproduction (Lichter, 1998). Strong prevailing winds, high insolation, sand mobility, high rates 

of evaporation, low availability of nitrogen and phosphorus, and beach use have substantial 

effects on early successional plant communities (Lichter, 1998).  
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Plants participate in the stabilization and development of dune systems, by continuing 

primary, secondary, and tertiary growth. When vegetation becomes the driver for dune 

stabilization and growth due to root structure and catchment for mobile sand. Furthermore, as 

distance increases from the shoreline, dune age and community structure become more 

developed because plants participate in stabilization and development of dune systems as 

environmental constraints lessen.  

These transition areas typically have numerous functional variations, but researchers 

often focus on a single environmental factor when classifying these areas. Additional factors 

related to the relationships of all the previously mentioned aspects, as well as soil composition, 

determine the wetness of the wetland, and thus the plant species complexes that are present in 

any specific interdunal wetland (Albert et al., 2005; FGDC, 2013; Moor, 2017). Additionally, 

climatic conditions such as precipitation and temperature that determine root growth and root 

mass and dispersal are also necessary. 

Root growth requires sufficient biochemical resources and species-specific soil 

temperatures within an acceptable range. Phenology shows a correlation between springtime 

warming, soil temperature, and new root and shoot growth (Clarke et al., 2015). Previous testing 

of shoot growth confirms that soil temperatures are the driving factors for branching, canopy 

development, and leaf size. However, sandy soils of interdunal wetlands pose a challenge for 

accurate phenology predictions within the system due to fluctuating coastal dune conditions. It is 

challenging to monitor anthropomorphic beach use; human activities range from little 

disturbance to severe disturbances, but without a doubt, the accumulation of activities alters the 

morphology of dune profiles. Furthermore, more anthropomorphic disruptions and pressures 

impair the maturation of plant communities to a greater extent (Straford and Rooney, 2017).      
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Applications of Remote Sensing to Wetlands Research 

There is a need to monitor wetland ecosystems, and field surveys provide the most 

detailed information on specific small-scale research sites. However, the impracticality of 

fieldwork in cost and time on a large swath of land directs researchers to the use of remotely 

sensed images. Remote sensing provides satellite, aircraft imagery, and data on larger scales with 

less time and money invested. With the analysis of wetland imagery, there are several 

implications related to inconsistent levels of accuracy. High temporal and spatial resolution 

imagery is ideal for accurate assessment of wetlands; however, there might be challenges with 

the availability of imagery data sources, especially given the high correlation between dune 

environments and clouds that potentially obscure the ground view for any given time of day or 

season. As shown in Table 2, many researchers use satellite imagery for ecological analysis of 

wetlands increasingly paired with supplemental imagery most recently provided by unoccupied 

aerial systems (UAS).  

One challenge of wetland monitoring is greater energy absorption due to higher variable 

moisture content of sand that affects camera sensors. Additionally, land cover is often not 

homogeneous given the gradients of vegetation diversity and developments, fluctuations of 

reflectance values and noise from vegetation interspersed with sand, and dynamic energy 

reflection of varying water levels and movements. To gather accurate imagery for subsequent 

analyses, integration of passive and active sensors, and ground-reference data is recommended to 

improve accuracy (Gallant et al., 2015). Ground-reference data has substantially higher spatial 

and spectral resolution compared to large image datasets (Jensen, 2005). Reference data may be 

acquired by field spectroradiometers or UAS imagery that is used to compare and augment the 

results of the remote sensing-derived thematic map. It is typical in a project to integrate imagery 
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from different spatial and multispectral resolutions to allow intensive manual interpretation of 

wetlands (Hardin et al., 2018).   

Typical remote sensing of wetlands involves image segmentation, the collection of 

supervised training sample points, and a subsequent supervised classification (Jensen, 2005). 

Jensen (2005) explains supervised classification as subdividing the imagery into spectral regions 

based on preciously field-collected training samples, while unsupervised classification clusters 

pixels by the natural grouping based only on homogeneous spectral data. Both supervised and 

unsupervised classification allows for a comparison of ground-truth spectral signatures and 

clusters of signatures to develop optimal spectral response patterns (Klemas, n.d.).  

     Improvement of mapping temporary wetlands can be supplemented with recurrent 

Landsat imagery. Dvorett et al. (2016) utilized Landsat 5 and 7 images covering a study area of 

1300 km2 along the Cimarron River in Central Oklahoma for early, peak, and post-growing 

seasons were collected, and training pixels in five land-cover classes were selected. Before 

image classification, training pixels are selected by the image analyst that represent homogenous 

sites for targeted land-cover types (Jensen, 2005). Training pixels from multiple images can 

increase the accuracy of seasonal variability in spectral signatures. However, it may be more 

challenging to determine the extent of interdunal wetlands given the variable inundation patterns 

and irregular periods of vegetation development  

2.3.1 Lidar applications 

Active sensors such as light detection and ranging (lidar) systems are equipped with a 

laser scanner emitting near-infrared pulses, a GPS receiver, and an inertial measurement unit 

(IMU) to capture 3D measurements, stored as point clouds, with associated latitude, longitude, 

and elevation coordinate data (Ellis and Mathews, 2018). An understanding of morphological 
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and hydrological parameters is needed before digital elevation models (DEM) can be generated 

from lidar data. More locational attributes can be created from DEMs and digital surface models 

(DSM), including slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, 

flow direction, flow accumulation, specific catchment areas, and steady-state topographic 

wetness index. Soil landscapes have direct relationships with soil properties, even excluding 

moisture and terrain attributes. Once a digital terrain map is completed, it is possible to predict 

future landscape changes based on spatial patterns of terrain attributes (Bou Keir et al., 2010). 

The fusion of satellite imagery and lidar-derived DEM data is often used to delineate and 

characterize wetlands (Chasmer et al., 2013; Rapinel et al., 2017). Rapinel et al. (2017) used 

lidar imagery fusion to extracts data delineating potential, current, efficient, and lost wetlands by 

acquiring lidar during early spring to avoid vegetation foliage shadows, a common issue of 

satellite images, and integrate satellite imagery with spectral signatures during the growing 

season. 

Corbane et al. (2015) evaluate remote sensing techniques for natural habitats and report 

the accurate wetland vegetation classification is difficult without lidar. Traditional methods using 

mid-to near-infrared bands have limited spectral returns due to soil saturation; moreover, the 

researchers recommend the integrated use of ancillary data, lidar, and hyperspectral imagery (see 

Table 1 for sensor suitability for wetland distinction). It should be noted here that this study used 

DEMs and DSMs with imagery for classification. The main difference is that the active sensor 

used for DEM generation records the ground elevation, while a passive sensor used for the DSM 

generation records the elevation of everything on the surface. Meaning, DSM supplies elevation 

of vegetation structures and DEMs supply elevation underneath the vegetation.  
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Table 1. Sensor suitability for mapping natural habitats in wetlands (adapted from Corbane et 

al., 2015). 

Sensors and Resolution Capability 

Low spatial and high 

temporal (MODIS, 

AVHRR) 

N/A 

Medium to high spatial and 

temporal (Landsat, IRS, 

SPOT) 

Seasonal imagery allows mapping the spatial extent of 

submerged wetland and some vegetation species, and functional 

wetland types 

Very high spatial 

(IKONOS, GeoEye, 

WorldView-2) 

Detection of riparian vegetation species, shallow, and 

submerged vegetation 

Hyperspectral (HyMap, 

CASI, Hyperion) 

Distinction between aquatic macrophyte species 

Laser Scanning (LiDAR) In combination with multispectral imagery 

High precision LiDAR-derived digital terrain map is used to 

build the relationship between wetland vegetation species and 

associated ground elevation. May enhance the understanding of 

the characteristics of different wetland vegetation species  

Active Microwave Sensor N/A 

Unoccupied Aerial Systems (UAS) and photogrammetry 

UAS can be used to map and monitor vegetation with onboard digital cameras at a very 

high spatial resolution. UAS provides accessibility and control for assessing environmental 

targets (Aber et al., 2010). UAS equipped with a digital camera capable of sensing various bands 

in the electromagnetic spectrum. The images collected from the aircraft can be instantaneously 

reviewed and processed by the remote pilot., Ground control points (GCPs) with known 

reference system coordinates are used to georeference the imagery (Aber et al., 2010). 

Georeferenced images from multiple perspectives are implemented in Structure from Motion-

Multi-View Stereo (SfM-MVS) programs to create a three-dimensional scene. SfM, a computer 

vision technique, stems from traditional photogrammetry and has been utilized extensively for 

surveying in recent years (Carrivick et al., 2016). SfM-MVS generates three-dimensional (3D) 

point cloud data using overlapping aerial photographs captured by the UAS.  
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There are six essential steps to produce SfM-MVS an orthomosaic and point cloud data 

including feature detection, keypoint correspondence, keypoint filtering, Structure from Motion, 

scaling, and georeferencing via GCPs, and MVS (Carrivick et al., 2016). This process, in its 

entirety, is commonly referred to simply as SfM. Carrivick et al. (2016) explain the following 

steps to obtain dense point cloud data. Feature detection matches images together based on 

feature points and identifies keypoints of invariant object characteristics that can be assigned to 

multiple imagers with different viewpoints. Keypoint correspondence and filtering involves an 

algorithm to describe features and orientation within the image, and then filter out the errors of 

specific images. The SfM step utilized a modified bundler algorithm (Snavely et al., 2003) to 

create a sparse point cloud on an arbitrary coordination system. After SfM, the sparse cloud data 

is coupled with an absolute reference system based on the GCPs. MVS is the next step that 

eliminates redundant images that have the same image clusters and produces a 3D reconstruction 

of the scene in dense point cloud datasets. The point cloud data can be applied in a GIS and 

preform an interpolation conversion to a digital surface model (DSM). Additionally, the DSM 

can aid object-based image classification by providing an additional band of information 

(Mathews, 2015).  

Remote Sensing of Dune Dynamics 

Lidar techniques are best for the study of both short-term and long-term coastal sand 

dynamics (Klemas, 2011), and combining digital terrain models with hyperspectral data often 

improves emergent benthic vegetation analysis (Klemas, 2011). Recent advancements in lidar 

techniques now offer valuable 10 cm vertical accuracy per one square meter of highly dynamic 

sedimentary surroundings, i.e., coastal and dune systems. An example of this application is a 
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study by Arbogast et al. (2009), where the researchers use lidar-derived point clouds to estimate 

sand volume estimation.  

Remote sensing analysis of coastal dunes requires extensive knowledge at varying 

temporal and spatial scales, particularly to the dune system. To address this issue, Delgado-

Fernandez et al. (2009) used three mounted digital SLR cameras to obtain time-lapse imagery 

over two months over their study area of the Greenwich Dunes on Prince Edward Island National 

Park. Once the imagery is processed, it is critical to calibrate initial moisture content reading by 

averaging red, green, and blue band pixels to obtain a greyscale grid to normalize the sand's 

moisture brightness values. As noted earlier, comparisons of night and day images indicate that 

dunes are more dynamic during the night. 

Object-based Remote Sensing for Vegetation Classification  

Object-based image analysis (OBIA) can be used for automated extraction of various 

land cover layers. Vegetation classification is possible using OBIA by applying specific 

parameters to delineate individual plant species. OBIA is a preferred method due to its range of 

applicability and ease of data fusion (Ellis and Mathews, 2018). The primary objective of OBIA 

is to extract meaningful objects, for further evaluation (Blaschke, 2010), often utilizing high 

spatial resolution imagery. Analysis at the object-scale requires higher resolution imagery for 

accurate delineation for a regionalized group of pixels. Moreover, high resolution is also required 

for small vegetated populations within interdunal wetlands. High-resolution products allow 

image segments to be broken into categories of point-based, edge-based, region-based, and data 

layers whereby a combination of these can be adopted for better classification. Once the 

classification is complete, vector feature classes are created.  
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     WorldView-2 satellite imagery is a standard product that is used for vegetation mapping 

and phenology type based on the object-based approach. A multi-resolution segmentation 

algorithm can generate general homogeneous objects with set parameters of scale, shape, and 

compactness. Multi-seasonal imagery significantly improves vegetation classification, while 

lidar is useful for the identification of vegetation functional types. High temporal data helps 

identify phenology dynamics in various vegetation types (Yan et al., 2018). Additionally, 

wetland plant functional types can be classified by C3 grasses; C3 forbs; C4 and C3 reeds; C4 

short grasses; emergent aquatic macrophytes; and floating and submerged aquatic 

macrophytes. Cluster analysis of the functional types can then be implemented in image 

segmentation. Plant functional type classification can be utilized in OBIA based on the distinct 

groupings of spectral signatures (Dronova et al., 2012). 

Ellis and Mathews (2018) conducted vegetation delineation of urban tree canopy change 

in Oklahoma City through high spatial resolution object-based image analysis (OBIA). OBIA 

methods used NAIP imagery, lidar, and lidar data fusion performing within 82-96% accuracy in 

calculating vegetation change between 2006 and 2013. Another application of lidar data 

collection uses a 50% overlap of scan lines to reduce canopy shadows and to allow the sampling 

of each side of treetops. Chasmer et al. (2016) employ lidar data to compare aerial photograph 

mosaics and Alberta Ground Cover Classification (AGCC) to delineate and improve peatland 

and wetland classification. Vegetation classification is established first to show land cover 

transition boundaries of forest to wetlands.  

To successfully classify vegetation types, a fusion of DEMs and/or DSMs, texture of 

physical landscapes, topographic data, and various spectral data is recommended (Chasmer et al., 

2014; Rapinel et al., 2017; Xie et al., 2008; see Table 2 for lidar data fusion examples). Chasmer 
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et al. (2014) and Knight et al. (2013) use a decision-tree land-cover classification utilizing 

multispectral resolutions, textures, and hierarchical classification procedures. Hierarchical 

classification can better delineate sub-layers of vegetation based on an appropriate spatial 

resolution for each land cover type. 

Table 2. Image classification approaches in similar research. 

Publication Classification/Methods Platform Data Source Results 

Chasmer et 

al., 2014 

Decision-Tree Fusion 

Classification 

Geomatica 

OrthoEngine 

Aerial imagery 

and LiDAR 

OA = ~ 91% 

Chasmer et 

al., 2016 

LiDAR-based 

unsupervised 

classification 

n/a LiDAR Errors of 

commission  

32% 

Errors of omission 

6% 

Chabout et 

al., 2018 

Object-based image 

analysis; machine 

learning classifier 

ENVI 5.4 

QGIS 

High-

Resolution 

UAS  imagery 

Above-water 

features 

OA = 89-92% 

Submerged 

features 

OA= 74-84%  

Dronova et 

al., 2014 

Object-based image 

analysis; machine 

learning classifier 

eCognition Landsat 5 TM OA = 85-90% 

Dronova et 

al., 2016 

Object-based image 

analysis; machine 

learning classifier 

Weka 3.6.5 

ArcGIS 10 

Worldview-1 

and QuickBird 

OA = 94.3% 

Dvorett et al., 

2016 

Decision-tree 

classification 

R 

ENVI 5.2 

Landsat 5  

Landsat 7  

LiDAR 

NAIP imagery 

Kappa = 96% 

Ellis et al., 

2018 

Object-based image 

classification 

Monteverdi LiDAR and 

NAIP imagery 

OA = 88-89% 

Knight et al., 

2013 

Decision-Tree 

classification  

See5 NAIP imagery 

LiDAR 

OA = 93% and 

77% 

Im et al., 2013 Object-based image 

analysis; machine 

learning classifier 

Definiens LiDAR OA = > 90% 

Rapinel et al., 

2017 

unsupervised ArcGIS LiDAR 

Historical 

aerial photos 

OA = 88-90% 

Yan et al., 

2018 

Object-based image 

analysis;  

eCognition WorldView-2 OA = 82.3-91.1% 
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Object-based Change Detection 

    OBIA can be used for regular and rapid interdunal wetland dynamics assessment. 

Lightfoot et al. (2020) describe a study to evaluate the change-detection of coastal ecosystems 

using OBIA. Post-classification change assessment involves the comparison of wetland shape 

and area from different dates of data acquisition and object classification. One advance of post-

classification change detection is the supply information for the direction of change and 

transitional "from-to" classes. The methodology consists of calculating the mean proportion of 

the total area of targeted wetland feature classes; calculating the transitional from-to classes 

mean proportion of total area, and calculating the total area change of each wetland feature class. 

Furthermore, a comparison map with wetlands, densities of vegetation, and sand classes with 

attributed change proportions of the total area give insight to the nature, significance, and spatial 

distribution and patterns of interdunal wetland ecosystems (Lightfoot et al., 2020). 
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DATA AND METHODS 

Overview 

To address the research objectives, this research applied an object-based image 

classification approach using remotely sensed data captured on August 13, 2018, September 9, 

2019, and October 18, 2019. For 2018 aerial imagery, dense vegetation, sand, and wetlands were 

classified, while 2019 aerial imagery obtained by UAS was classified into sparse (herbaceous) 

vegetation, dense (canopy cover) vegetation, sand, and wetlands. Accurate spatial and temporal 

scales were critical for accurate vegetation classification, and fieldwork was an iterative process 

for vegetation spectral signature measurement and observation (Jensen, 2005; Klemas, n.d.). 

Remote sensing techniques include preprocessing, OBIA (i.e. segmentation, attribution, and 

classification), and accuracy assessment. Data collection and analysis take on an empirical 

approach, constructing a model for vegetation and wetland relationships. Physically based 

numerical models involve the independent variables categorized from fieldwork observations 

and aerial imagery.  

Study Area 

The area of interest is in the Great Lakes Region on the west coast of the lower peninsula 

of Michigan. Ludington State Park (LSP) in Ludington, Michigan (Mason County) is situated 

between Lake Michigan and Hamlin Lake with over a mile stretch of Big Sable River running 

through (refer to Figure 1). The study portion falls inside the Stony Creek-Frontal Lake 

Michigan watershed within the Pere Marquette-White watershed basin. The natural processes of 
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wetland formation in this area occur when water-levels drop, establishing swales and depression 

between the inland dunes and newly created coastal foredune, then pooling up when water levels 

rise (Kost et al., 2007).  

LSP provides an especially unique ecosystem to examine, encompassing several 

environments such as dune, beach, wetland, marsh, and forest. LSP contains the largest area of 

interdunal wetlands, in the world, and provides important feeding areas for migrating shorebirds, 

waterfowl, and songbirds (USDA – Forest Service, 2006). The park contains woody vegetation, 

including Juniper, Jack Pine, and Hemlock, and is home to endangered Pitcher's Thistle and 

Piping Plover shorebirds. Dominant plants in the area can withstand sand burial and water-level 

fluctuations. Larger and deeper open wetlands are associated with surrounding shrubs and grass 

and often have emergent plants in shallow water (Kost et al., 2007). Readers are referred to 

Appendix A for a list of plants found in Michigan interdunal wetlands.  

Data and Data Processing 

Imagery and lidar from July 25, 2018 were collected from the National Agriculture 

Imagery Program (NAIP) downloaded via the USGS Earth Explorer. High-resolution NAIP 

imagery (Figure 8), in this case 4-band (B, G, R, NIR) 1-meter spatial resolution, enables 

assessment of the fluctuations of vegetation over different time intervals. As for the 2019 

imagery, two UAS flight campaigns took place in September and October. LSP is a large park in 

terms of land area (0.369 km2) and requires extensive sampling to cover the size and variability 

of geographic processes and for statistical analysis. The targeted variables that need to be 

characterized on-site include the extent of vegetation and temporary wetlands, dense vegetation 

of canopy cover, and sparse herbaceous vegetation groupings. These variables were tested to find 
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a relationship between wetland shape and size, distance from the shore, and surrounding 

vegetation.   

Figure 8. NAIP orthomosaic of study area, 2018 (1 m spatial resolution). 
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Fieldwork 

Fieldwork was performed at LSP once on September 9 (2019a) and October 18 (2019b) 

(Figures 9 and 10 respectively). A quadcopter UAS, specifically the DJI Mavic Pro 2, collected 

nadir aerial imagery on-site. The author served as the remote pilot (licensed by the Federal 

Aviation Administration) for data collection purposes adhering to flying restrictions under Part 

107, the Western Michigan University Drone Policy (request approved), and Michigan State 

Parks/Department of Natural Resources (use permit approved). The UAS was equipped with 

integrated Hasselblad RGB optical sensor. The UAS had five preprogrammed flight plans, using 

the Pix4Dcapture smartphone application, that acquired images throughout autonomous flight. 

Due to technical issues, only three of the five plans were able to be executed for 2019a in 

September. While 2019b covered a larger area, 1.064km2, the study area was reduced to the area 

covered by 2019a. In an interdunal wetland environment, there is little flight path planning 

needed to avoid obstacles. The UAS surveyed at a flying height of 390 ft above the ground 

surface flying in both  east-west and north-south directions (i.e. double-grid pattern) with a 75% 

forward (or front) overlap between images and 70% side overlap between successive flight lines. 

Given the extent of the area of interest and need for accurate georectification, 20 Propeller 

AeroPoint GCPs were dispersed throughout the study area. Due to areal coverage differences, 

only 7 out of 20 GCPs were observed in 2019a, while 2019b data acquisition observed 17.  

Photogrammetry 

Before SfM-MVS photogrammetric processing, each image was inspected for blur and 

lighting issues. Poor images were removed. Further, UAS-collected GNSS coordinates were 

cleared from the image metadata to rely solely on ground survey for georectification. This 

indirect georeferencing method was preferred because the AeroPoint GNSS accuracies (both 
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horizontal and vertical) are higher than the onboard UAS GNSS. SfM-MVS image matching was 

then conducted using Pix4Dmapper, which automatically detects keypoints within the area of 

interest that had several images matched to it, and then keypoint match correspondence with 

other images was carried out. The arbitrary coordinates from the sparse point cloud were 

transformed into the Michigan Central State Plane (ft) coordinate system using the known 

locations recorded by the Propeller AeroPoints (post-processed via the Propeller cloud; 

differentially corrected to 5.7 mm horizontal error and 3.81 mm vertical error on average)  

visible within the collected aerial photos.  

The 2019a dataset incorporated all 741 images collected. The 2019b dataset utilized 

1,151 of the  1,207 images collected. The sparse point cloud generating SfM algorithm was 

applied followed by the MVS algorithm to create a dense point cloud (example provided with 

Figure 11). The dense point cloud was converted to a digital surface model (DSM) raster and 

used to find the slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, 

flow direction, flow accumulation throughout LSP. Moreover, digital photogrammetric 

processing provided high spatial resolution (3 cm) georeferenced orthomosaics for 2019a and 

2019b for OBIA (Figures 9 and 10) as well as DSMs (Figure 12) for further analysis. SfM-MVS 

orthomosiacs contain RGB bands from the original images. In addition, the DSMs were stacked 

in the orthomosaics as a fourth band to aid OBIA processing. 



www.manaraa.com

31 

Figure 9. Orthomosaic of study area created from UAS imagery, 2019a (3 cm spatial resolution). 
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Figure 10. Orthomosaic of study area created from UAS imagery, 2019b (3 cm spatial 

resolution). 
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Figure 11. SfM-MVS dense point cloud for 2019a. 
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Figure 12. SfM-MVS derived digital surface model for 2019a. 
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Object-based Image Analysis (OBIA) of Ludington State Park land cover types 

ArcGIS Pro's Image Classification Wizard was used to streamline OBIA and to configure 

the supervised classification schema (i.e. image segments or objects were grouped using a 

supervised approach). Before classification, all orthomosaics went through a series of mean shift 

segmentation iterations to identify the optimal parameters of spectral and spatial detail as well as 

segment size of pixel groupings. The final parameters for segmentation used 18.5 spectral, 17 

spatial, and a minimum segment size of 50 pixels. Segments were grouped using the National 

Land Cover Dataset (NLCD) classification schema.  The final land cover classes include water, 

barren (sand or soil), herbaceous (sparse vegetation), and canopy cover (dense vegetation). The 

water classification delineated the wetland extent of the water edge to either sand or vegetation 

objects. The sparse vegetation delineation grouped clusters of grass, rush, sedge, and shrubs of at 

least 50 pixels. Additionally, the imagery and DSM fusion for OBIA was very useful and 

produced a high accuracy of dense vegetation delineation and wetland water edge.  

After running the mean shift segmentation using the optimal parameters, the training 

sample manager prompted a manual selection of various segment size, pure pixels, and mixed 

pixels. Two hundred training samples were placed into each class: water, barren, sparse 

vegetation, and dense vegetation (sparse and dense vegetation were combined for 2018) using 

the orthomosaics and segmented raster. The training samples were used in support vector 

machine classifier for OBIA. The next step is the reclassifier tool, and this allowed inaccurate 

pixel groupings reassignment to the correct grid code.  

An accuracy assessment was performed by creating 500 stratified random points to test 

the ground truth against the final OBIA map. Once the pixel groupings reached the highest 

accuracy, the rasters were converted to vector shapefiles, features. The accuracy assessments for 
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2018 and both 2019 datasets indicated that manual digitization was necessary (see Tables 3-5) , 

and more than 40 hours of work corrected the shape of all feature classes; wetlands, sparse 

vegetation, and dense vegetation (see Figures 13 and 14) 

Table 3. Land cover accuracy assessment of 2018 NAIP imagery. 

Class Value Vegetation Barren Water Total User Accuracy Kappa 

N
L

C
D

 Water 14 92 16 122 0.131147541 0 

Barren 0 167 0 167 1 0 

Vegetation 66 47 0 113 0.584070796 0 

Total 80 306 16 402 0 0 

Producer Accuracy 0.825 0.545751634 1 0 0.619402985 0 

Kappa 0 0 0 0 0 0.381911366 

Table 4.  Land cover accuracy assessment of 2019a UAS imagery. 

Class Value Canopy 

Cover 

Herbaceous Water Barren Total User 

Accuracy 

Kappa 

N
L

C
D

 Water 17 22 71 30 140 0.507142857 0 

Barren 0 20 10 168 198 0.848484848 0 

Canopy 

Cover 

43 7 1 4 55 0.781818182 0 

Herbaceous 2 58 16 32 108 0.537037037 0 

Total 62 107 98 234 501 0 0 

Producer 

Accuracy 

0.693548387 0.542056075 0.724489796 0.717948718 0 0.678642715 0 

Kappa 0 0 0 0 0 0 0.541655 

Table 5.  Land cover accuracy assessment of 2019b UAS imagery. 

Class Value Water Barren Canopy 

Cover 

Herbaceous Total User 

Accuracy 

Kappa 

N
L

C
D

 Water 30 5 24 22 81 0.37037037 0 

Barren 4 69 5 71 149 0.463087248 0 

Canopy 

Cover 

0 0 61 1 62 0.983870968 0 

Herbaceous 4 5 18 57 84 0.678571429 0 

Total 38 79 108 151 376 0 0 

Producer 

Accuracy 

0.789473684 0.873417722 0.564814815 0.377483444 0 0.57712766 0 

Kappa 0 0 0 0 0 0 0.442038 
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Figure 13. Wetland and vegetation growth and loss features between 2018 and 2019a. 
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Figure 14. Wetland and vegetation growth and loss features between 2019a and 2019b. 



www.manaraa.com

39 

Spatial Analysis 

The main objective of this project is to have a better understanding of spatial patterns and 

tendencies within interdunal wetland ecosystems. A series of overlay tools and zonal statistics 

was performed for 2018, 2019a, and 2019b for additional attributes for statistical testing and 

feature association. The Symmetrical Difference overlay tool was used to locate areas of loss and 

growth in sparse and dense vegetation and wetlands. Using the symmetrical difference tool, the 

sparse and dense vegetation and wetland features from 2018, 2019a, and 2019b were used to 

create new change detection features where there is no overlap. The change detection features 

represent month and annual changes of vegetation densities (sparse and dense) and wetland. 

Polygon area and perimeter length define geometry attributes and the shape metrics of features. 

After, polygons of growth and loss were separated, and geometry attributes were added to the 

features. Calculation of geometry attributes were added to each feature class. Annual change 

between 2018 and 2019a and monthly change between 2019a and 2019b define the stability of 

the ecosystem.  

The proximity of surrounding features is needed to understand the spatial arrangement of 

the ecosystem. Vegetation within a 10-meter Euclidean distance buffer of wetlands are 

considered directly proximal to a specific wetland.  To note, the 10-meter buffer was decided 

based on the ongoing Michigan Sea Grant study, for a preliminary and broad understanding on 

surrounding wetland vegetation. Using merged feature classes of 2018, 2019a, and 2019b 

wetlands, a 10-meter and 5-meter buffer were created around every wetland feature. 

Additionally, the buffers were segmented into 4 cardinal direction quadrants. The buffers were 

subdivided using equal area parameter to ensure the quadrant areas are normally distributed. An 

additional parameter was made for the degree of angle from which to segment the quadrants are 
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as follows: north is 135 – 45; east is 45 – 315; south is 315 – 225; and west is 225 – 135 (Figure 

15). The quadrants allow for an assumption of predominant slope aspect leading up to the 

wetland. To clarify, the north quadrant exhibits southern facing slopes, east quadrants have west 

facing slopes, etc. Slope and aspect are of particular interest because of vegetation growth and 

sun insolation. Slope and aspect irregularities and variation alter radiation, temperature, 

evaporation, and wind speed causing difference of plant composition and formation (Millington 

et al., 2011).  The aspect tool was used on 2018, and both 2019 DSMs that underwent zonal 

statistics to get the average slope direction for each buffer quadrant.   

Figure 15. Wetland buffer cardinal direction quadrants for a single wetland. 
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Distance to lakeshore/coastline can influence how wetland stability is affected by lake 

effects such as wind, tides, and distance. A distance raster was generated with the Euclidean 

Distance tool from the shoreline. To gather information on dune gradients and associated 

wetland change, slope was calculated on 2018 DEM and both 2019 DSMs. DSMs derived from 

the point clouds were used to create percent rise of dune slopes. To make sure the assumption 

was correct on quadrant slope directions, the Aspect tool was used to get the direction of Slope 

that was converted into a feature class (Figure 16).  

To get individual statistics for the amount of vegetation and wetland change within a 

specific aspect, the aspect polygons were then updated to the 10 and 5-meter buffers. To get each 

individual cardinal quadrants statistics of slope, predominant aspect, and distance to the 

shoreline, the zonal statistics tool was performed on each of the wetland 10 and 5-meter buffers. 

Tabulate Intersection tool calculated how much area and the percentage of coverage by sparse 

and dense vegetation and wetland within 10 meters of the specific wetland (see Table 6). After 

all attributes and statistics of features were calculated, the dataset included area and percentages 

in the buffer of a wetland of 2018 and both 2019 wetlands, sparse vegetation growth and loss, 

annual and monthly dense vegetation growth and loss, distance to coast, mean slope, and aspect. 
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Figure 16. Aspect of slope within the 10-meter buffer around wetland features in LSP. 
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Table 6. Partial results from tabulate intersection. 

Changed Area and Wetland Stability 

Wetlands 

Within the study area, 108 wetlands in 2019a covering 74,577.6 m2 with a range of 2.78 

m2 to 14,610.04 m2, while 2019b had 98 wetlands covering 82,501.33m2 with a range of 6.93 

m2 to 22,960.92 m2. In 2018, OBIA was used to extract 86 wetlands covering a total area of 

52,521.76 m2 with sizes ranging from 22.23 m2 to 8,748.17 m2. It is necessary to note that the 

spatial resolution limitation of 2018 imagery resulted in the inability to extract (and, thus, 

analyze) shallower interdunal wetlands where the water boundary line was not delineated from 

OBIA . From 2018 to 2019a, wetland area expanded by 22,055.85 m2 (1.42% increase); the 

smallest wetland delineated in 2018 was 22.23m2, while 2019a delineation was as small as 

2.78m2. From 2019a to 2019b, wetland area expanded by 7,923.72 m2 (1.11% increase). 
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Between 2018 to 2019b, wetland area expanded by 29,979.57 m2 or an increase of 1.32% 

(Table 7).  

The growth of wetlands spatially adhered to a parallel directionality compared to the 

shorelines. The closer the wetlands are to the shore the more potential they have to be highly 

dynamic. There are more stabilizing factors the farther away the wetlands are to the shoreline.  

Wetland expansion occurs in areas with relatively low slopes. For example, the largest wetland 

(Figure 17) in 2019 experienced the amalgamation of seven adjacent wetlands. In the central 

northeast there is an area of low-lying slopes (2 – 10 degrees) exhibiting a tendency toward 

wetland expansion around that area.  
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Figure 17. Largest wetland in 2019 with proximal slopes. 

Vegetation  

In 2018 there was an OBIA limitation in terms of spatial resolution compared to 2019, 

and small clusters of sparse vegetation were not possible to extract. This study quantified the 
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annual stability rate of dense vegetation 1.61% increase to 2019a and 1.66%  monthly increase to 

2019b, expanding from 28,586.46 m2 in 2018 to 46,113.3 m2 in 2019a to 47,452.67 m2 in 2019b.  

The sparse vegetation almost doubled from September to October with a 1.73% increase, 

expanding from 86,285.34 m2 to 149,138.70 m2. Referring to Figure 17 and 24, the sparse 

vegetation coverage provides evidence of wetland stabilization.  

Table 7. Land Cover Changes at Ludington State Park, 2018-2019. ([2018 to 2019a; 2019a to 

2019b]) 

Area (m2) 

Year 2018 2019a 2019b 

Land Cover Wetland 52,521.76 74,577.6 

[+1.42%] 

82,501.33 

[+1.32%; 

+1.11%]

Vegetation - 

Sparse 

... 86285.34 149138.70 

[+1.73%] 

Vegetation - 

Dense 

28,586.46 46,113.3 

[+1.61%] 

47,452.67 

[+1.66%; + 

1.06%] 
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RESULTS 

Statistical Analysis 

Correlations with wetland growth 

A Spearman's rank-order correlation was used to assess the relationship between wetland 

growth percentages and aspect, mean slope, and object-based change detection features of 

vegetation densities. One hundred and forty wetlands were analyzed. Statistically significant 

positive correlations were observed between annual wetland growth percentage and the dominant 

slope aspect of each quadrant, monthly sparse vegetation growth, and negative correlations with 

annual dense vegetation growth, annual dense vegetation loss, monthly dense vegetation growth, 

monthly dense vegetation loss, and monthly dense vegetation changes, monthly sparse 

vegetation loss, and percent rise of slope (see Table 8). 

Table 8. Correlations of annual wetland growth percentage. 

Annual Wetland 

Growth Percentage 

Spearman's 

rho   

Annual Wetland 

Growth Percentage 

Correlation 

Coefficient 

1.000 

Sig. (2-tailed) 

N 760 

Aspect Correlation 

Coefficient 

.077* 

Sig. (2-tailed) 0.034 

N 760 

Slope Correlation 

Coefficient 

-.150** 

Sig. (2-tailed) 0.000 

N 760 
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Monthly Dense 

Growth Percentage 

Correlation 

Coefficient 

-.227** 

Sig. (2-tailed) 0.000 

N 760 

Monthly Dense Loss 

Percentage 

Correlation 

Coefficient 

-.163** 

Sig. (2-tailed) 0.000 

N 760 

Annual Dense Loss 

Percentage 

Correlation 

Coefficient 

-.224** 

Sig. (2-tailed) 0.000 

N 760 

Annual Dense Growth 

Percentage 

Correlation 

Coefficient 

-.206** 

Sig. (2-tailed) 0.000 

N 760 

Monthly Sparse Loss 

Percentage 

Correlation 

Coefficient 

-.269** 

Sig. (2-tailed) 0.000 

N 760 

Monthly Sparse 

Growth Percentage 

Correlation 

Coefficient 

.075* 

Sig. (2-tailed) 0.039 

N 760 

The wetland growth's positive relationships, albeit weak relationships, between majority 

slope aspect and sparse vegetation signifies that the directionally of slopes within the buffers is 

important factor when analyzing wetland growth and with increased sparse vegetation. These 

positive correlations indicate that western facing slopes have more wetland growth. 

Directional quadrants of wetland buffers 

A one-way ANOVA was conducted to determine the difference between wetland buffer 

cardinal quadrants relating to annual wetland growth percentage. The quadrants were classified 

into four groups: north (n = 198), east (n = 183), south (n = 189), and west (n = 190).  The 

quadrants numbers are unequal due to outer wetlands extending past the study area. Data is 

Table 8 - continued
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presented as mean ± standard deviation. The wetland growth percentages increased from the 

south (14.93 ± 9.85), west (15.78 ± 11.32), east (17.19 ± 11.60), and north (18.61 ± 23.94), in 

that order; the cardinal direction quadrants significantly affected mean annual wetland growth 

percentage, F(3,756) = 3.833, p = .010 (Figure 18). Wetland expansion is highest in the north 

quadrants with east quadrants closely behind, suggesting that on average, the north and east 

quadrants are less stable than the south and west quadrants.  

Another one-way ANOVA was conducted to determine the difference between the same 

cardinal quadrants and  monthly sparse and dense growth percentages. The sparse growth 

percentage increased from east (21.39 ± 13.86), north (22.52 ± 14.59), south (23.97 ± 15.43), and 

west (23.98 ± 14.22), in that order; the directionality of the quadrants significantly affected mean 

monthly sparse vegetation growth percentage, F(3,376) = 0.530, p = 0.662 (Figure 19). The 

dense growth percentage increased from north (2.25 ± 4.39), east (2.56 ± 4.73), south (2.56 ± 

5.01), and west (3.09 ± 14.22), in that order; the directionality of the quadrants are significantly 

related with the mean monthly dense vegetation growth percentage, F(3,376) = 0.447, p = 0.72 

(Figure 20). In summary, dense and sparse vegetation growth is higher in the west and south, 

while productivity is comparability low in the north and east quadrants and have more wetland 

expansion.  
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Figure 18. ANOVA mean difference of annual wetland growth percentage by cardinal 

quadrants. 

Figure 19. Means plot of cardinal direction quadrants and monthly sparse vegetation growth 

percentages. 
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Figure 20. Mean line plot of cardinal direction quadrants and monthly dense vegetation growth 

percentages. 

Factor reduction 

A principal component analysis (PCA) was run on several variables of object-based 

change detection feature coverage in cardinal quadrant buffers, wetland area, predominant 

aspect, distance to coast, and mean slope. The suitability of PCA was evaluated prior to analysis 

to confirm that the results were appropriate to run a linear regression. Inspection of the 

correlation matrix showed that all variables had at least one correlation coefficient greater than 

0.3. The overall Kaiser-Meyer-Olkin (KMO) measure was 0.79 with individual KMO measures 

all greater than 0.7. Bartlett's Test of Sphericity was statistically significant (p < .0005), implying 

that the data was likely factorizable (see table 9). 
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Table 9. PCA Kaiser-Meyer-Olkin and Bartlett's scores. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 

Bartlett's Test of Sphericity .790 

Bartlett's Test of 

Sphericity 

Approx. Chi-Square 3008.383 

df 28 

PCA revealed three components that had eigenvalues greater than one and explained 

47.4%, 14.76%, 13.4 % of the total variance, respectively. Visual inspection of the scree plot 

indicated that only the three components should be retained; the third component is the inflation 

point that represents the point at which the graph beings to level out and the remaining 

components add little value to the total variance (Figure 21). The three-component solution 

explained 75.75% of the total variance. A Varimax orthogonal rotation was used to help 

interpretability. The rotated solution exhibited a complex structure, indicating the same variables 

are used in each loading and factor analysis, but have different loadings (Table 10).  

The main objective for the factor reduction through PCA is to understand the patterns of 

correlations between the original variables and create linear composites of the original variables 

for new indicators through shared properties. The score loadings were saved to run a regression 

model. The first component loading, scored high with distance to shoreline, slope, and annual 

dense vegetation changes, referred to as latitudinal succession loading. The second component 

loadings have high loadings of monthly dense growth and monthly sparse loss, referred to as 

vegetation development. The third component loadings scored high with aspect and monthly 

sparse growth, referred to as productivity of slope. These factor scores are the linear composite 
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of the optimally weighted original variables calculated automatically by SPSS statistics; 

essentially a weighted sum of the variables in each component.   

Figure 21. Principal component analysis scree plot. 

Table 10.  Rotated component matrixa of factor reduction. 

Variables 

Component 

Succession 
Vegetation 

Development 

Productivity 

of Slope 

Distance to Shoreline .851 -.004 .050 

Mean Slope .896 .251 -.101 

Percent Area of Monthly Dense Growth .369 .725 -.048 

Percent Area of Annual Dense Loss .735 .112 -.159 

Percent Area of Annual Dense Growth .835 .424 -.019 

Percent Area of Monthly Sparse Loss .024 .906 .026 

Percent Area of Monthly Sparse Growth -.434 -.365 .573 

Aspect .047 .105 .923 

Extraction Method: Principal Component Analysis. 

 Rotation Method: Varimax with Kaiser Normalization.a 

a. Rotation converged in 4 iterations.
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Wetland growth regression 

A linear regression was run to understand the effect of environmental influences and 

change detection features on wetland stability. To assess linearity a scatterplot of the three PCA 

components regression factor scores superimposed a regression line and was plotted along with 

histogram of the dependent variable. Visual inspection of these two plots indicated a linear 

relationship between the variables. There was homoscedasticity and normality of the residuals. 

The regression equations for PCA 1-3 are: wetland growth percentage = 94.67 – 32.37* 

latitudinal succession , 95% CI [-45.978, -18.755]; wetland growth percentage = 94.67 – 42.07 * 

vegetation development, 95% CI [-55.686, -28.462]; wetland growth percentage = 94.67 – 

157.08 * productivity of slope, 95% CI [-171.692, -144.468]. The three components statistically 

and significantly predicted wetland growth areas, F(3, 756) = 192.787, p < .0005, accounting for 

43.3% of the variation in wetland growth area with adjusted R2 = 43.1% (refer to Tables 11-13 

and Figures 22 and 23). 

The R2 value of 43.1% represent the percentage of variance of wetland growth that can be 

explained by the PCAs. The regression analysis show there is a negative relationship between the 

dependent variable, Annual Wetland Growth, and the independent variable included in the PCA. 

The p-value of 0.0005 provides enough evidence to reject the null hypothesis of that annual 

wetland growth is not influence by any of the independent variables. The coefficients for 

succession, vegetation development, and productivity of slope are as follows: -32.37, -42.07, and 

-157.08; from the regression equation, the prediction can be make that if there is an increase of

PCA factor scores, annual wetland growth decreases, i.e. wetlands will have more stability. 
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Table 11. R-square values for regression model. 

Table 12. ANOVA of regression model. 

Table 13. Regression coefficients for PCA components. 

Regression Model 

(Constant) Succession 
Vegetation 

Development 

Productivity of 

Slope 

Unstandardized 

Coefficients 

B 94.673 -32.366 -42.074 -158.080

Std. Error 6.929 6.934 6.934 6.934 

Standardized Coefficients Beta -.128 -.166 -.624 

t 13.663 -4.668 -6.068 -22.798

Sig. .000 .000 .000 .000 

95.0% Confidence 

Interval for B 

Lower Bound 81.070 -45.978 -55.686 -171.692

Upper Bound 108.276 -18.755 -28.462 -144.468

Correlations Zero-order -.128 -.166 -.624 

Partial -.167 -.215 -.638 

Part -.128 -.166 -.624 

Collinearity Statistics Tolerance 1.000 1.000 1.000 

VIF 1.000 1.000 1.000 

a. Dependent Variable: Area of Annual Wetland Growth
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Figure 22. Regression scatterplot of annual wetland growth area. 

Figure 23. Histogram of annual wetland growth. 

Summary 

Abiotic factors included in the statistical analysis are distance to the coast, direction of 

slope, and percent rise of slopes. With the 5 and 10-meter buffers and their divided cardinal 

quadrants, every wetland was attributed eight different sets of data. However, after testing the 
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differences of buffer sizes, it has been confirmed that both buffer distances produce the same 

results in the regression equation. Moreover, the 5-meter buffer can be dropped from the analysis 

and the results are the same.  

Wetland growth is negatively correlated with distance to coast and percent rise of slope, 

the farther away a wetland is from the shore, the angle of slope increases making wetland growth 

unfavorable The cardinal direction quadrants of wetland buffers show that annual wetland 

expansion is more likely to occur in the north and east quadrants with mean wetland percentages 

over 17 rather than west and south with mean wetland percentages under 16. However, the north 

and east quadrants have higher standard deviations than west and south. This also provides 

insight that more vegetation is along the west and south quadrants. The largest wetland (refer to 

Figure 17) in 2019 experienced the amalgamation of 7 directly proximal wetlands. Additionally, 

neighboring wetlands experienced a union of 2 or more, which proves the necessity of 

quantifying surrounding vegetation that contributes to stabilization. This wetland has very low-

lying slopes to the northeast, as well as less vegetation clusters. Implying that the lower the 

slope, the less resistance of wetland expansion, perhaps aid the directional flow.  

The slope direction polygons with attributed slope percent provided insight were sparse 

and dense vegetation are more likely to be found, while significant wetland expansion occurs is 

area with relatively low slopes. Based on the sun azimuth and radiation, vegetation is more like 

to grow in the north and east quadrants. However, based on the evidence that sparse vegetation is 

more prevalent in the west and south quadrants, we can assume that these specific vegetation 

species pioneer on the windward side of the slope relative to the wetland. In most cases, through 

fieldwork observation as well, the vegetation structures reduce erosion and even influence sand 
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buildup, and on the leeward side a there is little vegetation formed, often open sand, to meet the 

wetlands.  



www.manaraa.com

59 

DISCUSSION 

Interdunal wetlands provide an especially challenging environment for landscape ecology 

research due to their extremely dynamic nature. However, Ludington State Park is designated a 

critical dune area and any research conducted to understand the ecosystem is noteworthy. This 

research on interdunal wetland landscape ecology relied heavily on geospatial tools and 

techniques and answered research questions regarding the spatial distribution of environmental 

influences and change rates.  

UAS and GIS Applications in Interdunal Wetland Research  

This study involved various applications to answer the proposed questions. Commonly in 

exploratory applications research, adaptions are necessary to reduce the amount of limitations 

and uncertainties. Unfortunately, UAS flights were not permitted for most of the growing season 

and reduced fieldwork dates from the proposed five to two, limiting research at the end of the 

growing season. Additionally, without high temporal datasets, it was not possible to accurately 

classify specific vegetation species based on phenology and spectral signatures (Yan et al.,2018) 

UAS flights covered a total area of 0.369 km2 at 390 ft (119 m) above the surface with a high 

spatial resolution of 3 cm.  

Keypoint matching across images for both 2019a and 2019b passed the quality check in 

Pix4D. An average of 97.5% of images were calibrated with a mean of 30,972 matches per 

image for 2019a and 23,568 matches for 2019b during SfM processing. The amount of keypoints 

and matches are typical for SfM. One of reasons that may explain the lower match amount in 
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2019b was an offset in camera calibrations that created too much exposure in images to detect 

enough keypoints. From GCPs, an absolute reference system was used for georeferencing, a 

crucial element for orthomosiacs and ultimately, accurate delineation of features and their size, 

shape, and orientation. The DSMs created from SfM-MVS added value to both OBIA 

classification and spatial analysis (Mathews, 2015). With visual interpretation of the DSMs 

alone, it was possible to predict the landscape features, specifically wetland areas and dense 

vegetation, based on the terrain attributes (Bou Keir et al, 2010).  

OBIA classification results extracted meaningful vegetation densities of growth and loss 

and wetland growth and loss features for spatial analysis by applying specific parameters, in this 

case 18.5 spectral, 17 spatial, and a minimum segment size of 50 pixels (Ellis and Mathews, 

2018). The high resolution of imagery allowed the supervised classification to delineate clusters 

of sparse vegetation in 2019. By compositing the imagery with DSMs, dense vegetation was 

easily extracted. One of the challenges of OBIA in wetland ecosystem previously mentioned is 

the moisture content of the sand, especially areas within a meter of the wetland (Delgado-

Fernandez et al., 2009). The OBIA frequently classified these areas as water, or even sparse 

vegetation, due to the naturally shallow edges of the wetland, saturated nearby sand, and limited 

senor capabilities. Most research involving OBIA application has an overall accuracy score near 

or about 90% (refer to Table 2), this study's maximum overall accuracy was 67%, supporting the 

decision to edit 2018, 2019a and 2019b's classification results through manual digitization. 

This study explored numerous analysis tools and many adaptations were made to 

understand the spatial patterns and tendencies of interdunal wetlands. To evaluate change 

detection, the assessment involved comparing the size and shape of features from different dates 

and calculating portion of one date features within a feature from another data (Lightfoot et 
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al.,2020). A deeper understanding of the relationship between vegetation and wetland 

stabilization was achieved by calculating the geometry attributes of area and percentage, rather 

than attributing wetland buffer areas with presence and no presence. Aspect polygons provided 

insight and confirms that sun insolation is important to understand where sparse and dense 

vegetation is more likely to grow. 

Statistical Analysis Results  

Cardinal quadrant of natural processes  

The cardinal direction quadrants added considerable value to analysis, not only to 

examine the average slope direction, but to analyze which portions of the wetland are more 

susceptible to environmental influences rather than the entire wetland. The south quadrant has 

the lowest mean percentage of wetland growth, there are several factors that could influence this 

including less wind disturbance from higher slopes, less vegetation productivity, and distance to 

the shore. The west and east quadrant have similar means, but the assumption can and should be 

made that the west quadrant has more stabilizing factors compared to the east quadrant.  

There is higher coverage of sparse vegetation in the west and south quadrants of the 

wetlands compared to the north and east quadrants. The slopes of south and west quadrants are 

primarily facing to the north and east, where the more predominant sun influencing increased 

productivity of vegetation. The significant increase of vegetation corresponds to the natural 

processes of open and close dune complexes. The grass and shrubs considered as sparse 

vegetation is adapted to withstand constant sand burial and strong winds, while sparse vegetation 

is consistently buried, the roots continue to stabilize the soil and accumulate organic soil for 

further primary vegetation growth that progress into secondary and tertiary growth. 
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Both monthly sparse and dense vegetation growth is highest in the west and south 

quadrants, respectively. Thus, the north and east quadrant areas are less fitting for vegetation 

growth due to high sun insolation and temperatures. By comparing the difference of means of 

monthly vegetation growth, a predication was made that north and east quadrants with the lowest 

vegetation growth means, have the highest wetland growth means. The first ANOVA comparing 

wetland growth confirms the relationship that quadrants with low vegetation growth has a 

negative relationship with wetland growth.  

Factor reduction 

The eigenvalues in PCA greater than 1 are considered significant and implies that loading 

patterns are meaningful. while the varimax factor score in the rotate component matrix great than 

0.6 is considered as a strong value range in loadings. The three component loadings partitioned 

the original variables in a meaningful way to interpret various elements of the ecosystem: 

latitudinal succession, vegetation development, and productivity of slopes. The latitudinal 

succession explains dense vegetation is more prevalent in the backdune, where there in more 

stable ground for dune to grow. The vegetation development explains the natural process of 

primary, secondary, and tertiary vegetation growth, while the productivity of slope explains how 

biogeographical distributions of the environment play an important role in vegetations 

productivity.  

Regression  

The regression coefficients for PCA succession, vegetation development, and 

productivity of slope represent the mean change of wetland growth. For every additional factor 

score in succession, vegetation development, and productivity of slope the wetland growth will 

decrease. The succession PCA loading was high in distance to shoreline, slope, and annual dense 
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vegetation changes suggesting there is a latitudinal gradient of dune succession extending inland. 

The vegetation development PCA loading was high in monthly dense growth and monthly sparse 

loss confirming that primary growth, sparse vegetation will eventually be replaced by secondary 

growth, dense vegetation. The productivity of slopes PCA loading scored high in aspect and 

monthly sparse growth indicating that directionality of sun insolation and wind prevalence is an 

important consideration when monitoring primary vegetation growth.  

Spatial Distributions of Natural Processes and Interdunal Wetland Stability  

LSP has distinctive interdunal zones; beach, foredune, interdunal wetland, and backdune 

which progress latitudinally with mixed blowouts and dune fields. Then natural processes of 

sand conveyance by waves and current occur at the beach and extending to the foredune, then 

wind carries sand farther inland to building the backdune. However, the human use of the beach, 

particularly the dirt/sand road stretching north-to-south through the study area, directly effects 

the ecosystem's dynamics. This road is located in the trough of the foredune and backdune, and it 

is evident that it restricts the adjacent backdune growth, continuing the expansion of the foredune 

and interdunal wetland.  

Wetland stabilization relies heavily on surrounding vegetation and the accumulation of 

organic soil, dune slopes and vulnerability of erosion, and distance to the coast. The annual and 

monthly dynamics of wetlands and vegetation were quantified. Monthly mean water-levels of 

Lake Michigan corresponding to data acquisition dates are as follows: July 2018 - 566.92ft, 

September 2019 - 5881.63 ft, and October 2019 - 581.66 ft (US Army Corps of Engineers, 

2019). The wetlands and Lake Michigan water-levels are in synchrony; the 21.71 ft increase 

from 2018 to 2019a supports the annual change rate of wetlands of +1.42% increase and the 

small increase from 2019a to 2019b accounts for the monthly increase of 1.11%.  
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The distinct water movements, inflow and outflow, and variation of organic soil affect 

wetland size (Brinson, 1993). The largest wetland, refer to Figure 17, is an example of drastic 

water movement, and thus, influenced multiple wetland amalgamation. After visual 

interpretation of each DSM, the slopes around the wetland continued to decrease. This wetland is 

also adjacent to dirt road that has, without a doubt, influenced the dynamics of vegetation, dune, 

and wetland growth. Additionally, neighboring wetlands experienced a union of 2 or more, 

which proves the necessity of quantifying surrounding vegetation that contributes to 

stabilization. Figure 18 shows sparse vegetation surrounding the largest wetland; no dense 

vegetation is present around this wetland. The northeast portion has large areas of open sand with 

relatively low slopes, this provides insight on the importance of sparse vegetation presence.  

When wetlands are surrounded by majority dense vegetation, there is less change because 

of higher accumulation of organic soil and less susceptibility of wind and water erosion. 

Additionally, distance from the shoreline and mean percent rise of slope coincide with annual 

dense vegetation change. The increased slopes indicate natural succession stages, where the sand 

becomes more stable as vegetation continues into secondary and tertiary growth, catching mobile 

sand, growth in dune structure, and accumulating more organic matter. The positive relationship 

of this these factors signifies that there is west to east gradient of presence of dense vegetation 

developing farther away from the shoreline. Furthermore, wetlands situated at the bottom of 

steep slopes with dense vegetation are less likely to expand and the more gradually the slope is 

the more wetland growth with take place 
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Figure 24. Northern portion of the largest wetland in 2019 with surrounding sparse vegetation. 

Plant communities dependent on spatiotemporal patterns in water availability. Natural 

processes of dune growth and regression develop over several types of land cover within a 

wetland, providing a unique niche for flora and fauna. The produced comparisons of 2018, 
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2019a, and 2019b wetlands and densities of vegetation, with attributed change proportions of the 

total area and percentage gave insight to the nature, significance, and spatial distribution and 

patterns of interdunal wetland ecosystems (Lightfoot et al., 2020). While extracting vegetation 

and wetland features through OBIA, is was apparent that vegetation structures fluctuate 

throughout the dune system and confirms there is a latitudinal, succession gradient from west to 

east. After extracting vegetation features from 2018, 2019a, and 2019b, environmental influences 

such as prevailing winds, sand mobility, high insolation, beach use have substantial effects on 

early successional plant communities.  

The foredune zone is where the pioneer (sparse) vegetation is established. There is a 

correlation between distance to the shore and sparse vegetation growth. The backdune zone of 

LSP is where the majority of dense vegetation is found. There is a negative correlation between 

sparse and dense vegetation, meaning if there is more sparse growth it does not necessarily mean 

there is dense vegetation loss; rather, the dense vegetation needs pioneer species, sparse 

vegetation, to establish growth in. The sparse vegetation is adapted to withstand strong 

prevailing winds, high insulation, and fluctuations in water availability. Dense vegetation can  

only grow after sparse, and commonly take the place of sparse, meaning as sparse vegetation loss 

percentages go down dense growth percentages go up with increasing distance from the 

shoreline.  

In the northern hemisphere, an inference can be made that south facing slopes receive 

more sunlight, and thus, grow more vegetation. However, vegetation growth is more 

predominant in west and south quadrants. While the cardinal quadrants represent the 

generalization of slope direction directly at the wetland edge, the buffer extends 10 meters and 

captures the opposite slope leading up the dune peak which quickly reaches the wetland edge. To 
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further explain, the majority of vegetation growth summarized within the buffers is on the 

windward side relative to the center of the wetland. Furthermore, the west and south facing 

slopes leading up to the peak are found in the west and south quadrants that have more 

vegetation growth. The north and east quadrants have low vegetation growth which make it 

easier for wetlands to expand further out in those quadrants, even more so in areas with low lying 

slopes. 

Additionally, over time in these dune systems, blowouts occur where sparse vegetation 

stabilization does not provide enough resiliency to wind erosion. When blowouts occur (see 

Figure 25), the depression continues to deepen, often steep slopes, by wind and creates an area 

for interdunal wetlands to form. This natural process in particular is important in research 

monitoring wetlands because of blowouts proximity to the coast and the susceptibility to abiotic 

factors. If a blowout occurs closer to the beach, one can expect extreme changes due to sand 

erosion and waves that could influence the blowout expanding inland. If the blowout is located in 

the backdune, it can be expected that dense vegetation continues to stabilize the ground and even 

build up the dune by catching sand from wind transportation.  

Figure 25. Example of a blowout forming a pocket for wetland development due to vegetation 

erosion. 



www.manaraa.com

68 

Limitations 

Data acquisition 

Timing of imagery should be improved, over a year between observations and over a 

single month, so not constant with timing. For comprehensive annual and monthly change rate, it 

is better to have multiple time intervals observed and determine the average change of all 

intervals. Additionally, spatial resolution restriction has significantly limited that amount of 

analysis that can be conducted. The assumption that small and shallow wetlands in 2018, as well 

as sparse vegetation structures were not extracted from OBIA and the wetland change rate could 

be drastically less.  

Modifiable Areal Unit Problem (MAUP) 

MAUP affected results when point-based measures of spatial phenomena are aggregated 

into wetland buffers. There was statistical bias that has impacted the results of statistical research 

tests, specifically the cardinal quadrants and direction of slope. For instance, the created slope 

aspect polygons were summarized to get the mean direction of slope within the buffer; some 

buffers contained over 15 separated direction features. Therefore, the connection between mean 

direction of slope depends on the size of buffers and slope aspect polygons for which data are 

reported. The aggregation of the smaller aspect features renders heightened bias and correlation 

areal size of buffers increases. Furthermore, the aggregation of direction of slope discards the 

variation in correlation statistics caused by the regrouping of aspect into different configurations 

at the same scale of the buffers.  

Future Research 

Recommendations for future research in monitoring the change of interdunal wetlands 

should include improved data acquisition and sensor abilities, inclusion of wind and precipitation 
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patterns, heavier use of DSMs, methodology for cardinal direction quadrants, less data 

aggregation, and potentially interpolation methods for environmental constraints. Improved data 

acquisition includes higher frequency of UAS flights over several years in the growing season to 

approximate consistent annual and monthly change rates. If hyperspectral sensors are used for 

extraction of emergent and benthic vegetation the understanding the overall productivity taken 

place within wetlands is improved. Wind patterns and strength of wind gusts could be used to 

interpolate surface vulnerability of erosion. Precipitation patterns provide insight changed rates 

of wetland expansion and loss. In this study, DSMs were only used to aid OBIA and calculate 

slopes, but DSMs have the potential to interpolate the depth of wetlands or path distances rather 

than Euclidean distance. The cardinal quadrant may have had better results if the Euclidean 

direction tool used with the wetland centroids and reclassifying for only the 4 major direction 

rather than using the subdivide tool with equal area. Less data aggregation decrease the effect of 

MAUP; however, machine learning and automation may be necessary to handle to the large 

datasets.  
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CONCLUSION 

This research on interdunal wetlands sought to advance our understanding of ecosystem 

dynamics and associated environmental influences. The results of the research show that UAS 

remote sensing and geospatial analyses is necessary to interpret, monitor, and analyze the a 

highly dynamic ecosystem. The main finding of this study is where there is more productivity of 

vegetation, the more stable the soil and sand is aiding constant wetland levels. Additionally, 

vegetation structures within dune complexes are conditioned to withstand the strong prevailing 

southwest winds. The west and south cardinal quadrants experience more wetland stability. The 

west and south quadrants are areas where more vegetation growth is found, providing sand 

stability and wind divergence. The north and east quadrants are areas where wetland expansion is 

likely to occur due to low vegetation presence.  

Vegetation and slopes increase as distance to the shoreline increase, especially in the 

backdune zone, because there is less wind erosion allowing dense vegetation to establish, and 

thus, catching wind transported sand to build up the dune. The negative correlations with dense 

vegetation change indicate that wetland growth is unlikely when there is presence of dense 

vegetation. The slope has a negative relationship with wetland growth as well, implying that 

wetlands situated at the bottom of steep slopes are less likely to expand and the more gradually 

the slope is the more wetland growth with take place. LSP exhibits a interdunal wetland 

latitudinal succession gradient. 
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As for ongoing biodiversity study of Lake Michigan’s interdunal wetlands,  this research 

provides insight on the importance of the biogeographical distribution of vegetation. Vegetation 

has the upmost importance of wetland stability, which affects macroinvertebrate community 

structures, spatial and temporal pattern of amphibians, food-chains, and landscape-level genetic 

pattern. For future diversity sampling, fieldwork should focus on the southwest portion of 

wetlands. With higher presence of vegetation in these portions provide a niche habit for species 

of the study’s interest.  
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APPENDIX. List of object-based image analysis feature classes included in statistical analysis. 

OBIA Delineation 

NLCD Classification Thesis Representation Year 

Water Wetland 2018-2019b 

Herbaceous Sparse Vegetation 2019a-2019b 

Mixed Forest Dense Vegetation 2018-2019b 

Barren Sand dropped 

Object-based Change Detection via Overlay Tools 

WGM Monthly Wetland Growth 

WGY Annual Wetland Growth 

SGM Monthly Sparse Vegetation Growth 

DGM Monthly Dense Vegetation Growth 

DGY Annual Dense Vegetation Growth 

Buffer coverage of Object-based Change Detection 

WGM_Percentage Percentage of Monthly Wetland Growth in Buffer 

WGM_Area Area of Monthly Wetland Growth in Buffer 

WGY_Percentage Percentage of Annual Wetland Growth in Buffer 

WGY_Area Area of Annual Wetland Growth in Cardinal Buffer 

SGM_Percentage Percentage of Monthly Sparse Vegetation Growth in Buffer 

SGM_Area Area of Monthly Sparse Vegetation Growth in Buffer 

DGM_Percentage Percentage of Monthly Dense Vegetation Growth in Buffer 

DGM_Area Area of Monthly Dense Vegetation Growth in Buffer 

DGY_Percentage Percentage of Annual Dense Vegetation Growth in Buffer 
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